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Gravity wave radiation by vortical flows in the $plane shallow-water equations is 
investigated by direct nonlinear numerical simulation. The flows considered are 
initially parallel flows, consisting of a single strip in which the potential vorticity differs 
from the background value. The flows are unstable to the barotropic instability 
mechanism, and roll up into a train of vortices. During the subsequent evolution of the 
vortex train, gravity waves are radiated. In the limit of small Froude number, the 
gravity wave radiation is compared with that predicted by an appropriately modified 
version of the Lighthill theory of aerodynamic sound generation. It is found that the 
gravity wave field agrees well with that predicted by the theory, provided typical 
lengthscales of vortical motions are well within one deformation radius. 

It is found that the nutation time for vortices in the train increases rapidly with 
increasing Froude number in cases where the potential vorticity in the vortices is of the 
same sign as the background value, whereas the nutation time is almost independent 
of Froude number in cases where the potential vorticity in the vortices is zero or of 
opposite sign to the background. Consequently, in the former cases, the unsteadiness 
of the flow decreases with increasing Froude number, so the effect of the inertial cut- 
off frequency is increased, leading to an optimal Froude number for gravity wave 
radiation, above which the intensity of the radiated waves decreases as the Froude 
number is further increased. It is proposed that the existence of a finite range of 
interaction within the vortices, for flows with positive vortex potential vorticity, may 
account for the strong dependence of nutation time on Froude number in those cases. 
The interaction scale within the vortices becomes infinite in the limit of zero vortex 
potential vorticity, and so the arguments do not apply in those cases. 

1. Introduction 
The remarkable extent to which vortical motions and gravity waves appear to have 

almost negligible interaction with each other in many cases of meteorological and 
oceanographic interest has received renewed attention in recent years, following the 
review article of Hoskins, McIntyre & Robertson (1985). The conceptual simplification 
of ‘balanced’ dynamics, in which, in the case of the shallow-water equations, the 
potential vorticity field alone is required to determine the evolution of the flow, and 
from which freely propagating gravity waves are therefore excluded (Hoskins et al. 
1985; Ford, McIntyre & Norton 1994), makes it imperative that we understand 
precisely the circumstances in which vortical motions do excite strong gravity waves, 
and those in which they do not. 

t Current address: Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA92093- 
0225, USA. 
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Several numerical studies (McWilliams, Gent & Norton 1986; Norton 1988; Allen, 
Barth & Newberger 1990; Barth, Allen & Newberger 1990; McIntyre & Norton 1994) 
have addressed the degree to which various balanced models, of greater or lesser 
accuracy, given a variety of balanced initial conditions, will follow the evolution of the 
full equations from which gravity waves are not excluded. In particular, Norton (1988) 
and McIntyre & Norton (1994) demonstrate that gravity waves of large amplitude are 
generally not excited in shallow-water simulations of a forced stratospheric polar 
vortex, even when the Rossby number exceeds unity and the Froude number is of order 
unity in at least some parts of the domain. 

However, using such an approach, it is very difficult to separate fundamentally 
unbalanced motions from corrections to the balanced dynamics not represented by the 
balanced model under consideration. The present paper therefore takes a somewhat 
different approach to the problem, and investigates the amplitude of freely propagating 
gravity waves generated by vortical motions in a flow in which the vortical flow is 
confined to a finite region, away from which gravity waves may radiate. The magitude 
of the gravity wave fluxes far from the vortical region then serves as a measure of the 
degree to which the flow cannot be described in terms of balanced dynamics. 

The model system of equations used in this study are the shallow-water equations on 
an $plane (equations (1) and (2) below), which are the simplest equations in which 
both vortical motions and gravity waves can exist. In addition to their simplicity, a 
further advantage of the shallow-water equations is that, in the absence of the Coriolis 
force, they are equivalent to the equations for a two-dimensional adiabatic gas with a 
ratio of specific heats y = 2. The gravity waves in the shallow-water equations are the 
analogues of the acoustic waves in the compressible gas equations. In this paper, we 
shall exploit this analogy, with specific reference to the Lighthill theory of aerodynamic 
sound generation (Lighthill 1952), in which vortical motions are regarded as responsible 
for the generation of sound waves. The theory predicts that, in the limit of small Mach 
number, the intensity of the acoustic waves radiated is proportional to M5+TL,  where n 
is the number of spatial dimensions in which the acoustic waves propagate (Lighthill 
1952; Ffowcs Williams 1969). 

Since the development of the Lighthill theory of aerodynamic sound generation, 
several attempts have been made to verify it, and to investigate the range of Mach 
numbers over which it is valid. In general, acoustic data from three-dimensional jet 
experiments (Lighthill 1954; Lush 1971; Moore 1977; Bridges & Hussain 1992), two- 
dimensional jet experiments (Webster 1970) and three-dimensional vortex ring 
experiments (Kambe & Minota 1981, 1983; Minota & Kambe 1986) are in good 
agreement with the scaling laws, up to M x 1. Recently, Lele & Ho (1994) have 
presented a numerical study of a compressible mixing layer in a two-dimensional 
numerical model. The mixing layer is unstable, and the waves which grow on the edges 
of the mixing layer eventually develop into a train of coherent vortices. Lele & Ho 
found that the agreement between the simulated radiated wave field and its 
reconstruction using the Lighthill theory was quite good at Mach numbers of up to 
about 0.6, at which they found errors in the acoustic pressure field predicted by the 
Lighthill reconstruction of about 10 %. For Mach numbers up to 0.2, the errors were 
only about 1-2 %. Much larger errors were found, however, when the source flow was 
assumed to be incompressible. It seems that the low-Mach-number approximation is 
significantly violated in the vortical region at quite small Mach numbers, whereas the 
assumption that the source region is small compared with the scale of the acoustic 
waves generated, although formally a low-Mach-number approximation itself, is valid 
over a much wider range of Mach numbers. 
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In common with the study of Lele & Ho, the initial states for the present study are 
also unstable steady parallel shear flows, in which the flow is at rest far from the region 
of shear instability, with rest depth h,. However, the present study uses the f-plane 
shallow-water equations, so the effects of background rotation, relevant in the 
geophysical context of gravity wave generation, may be investigated. The f-plane 
shallow-water equations are 

ah 
at 
- + V . ( h u )  = 0, 

where u is the two-dimensional velocity field, h is the layer depth, f is the inertial 
frequency, g is the acceleration due to gravity, and k is a unit vector perpendicular to 
the (x, y)-plane. The potential vorticity Q is given by Q = (f + k. V x u ) /h .  In general, 
f may be taken to be a function of latitude, but in this paper we shall take f to be 
constant. 

In the present study the potential vorticity takes its uniform background value 
Q, = f / h ,  everywhere except in a strip of finite width A ,  where it takes a different value 
Q,. The potential vorticity jump is smoothed out over a small distance so that it can 
be represented in a finite-difference numerical scheme. The ratio of the difference 
between the strip and background potential vorticities, Q, - Q,, to the background 
value, Q,, defines an effective Rossby number Ro = Q,/Q,- 1 for the flow which, 
under this definition, may be either positive or negative. As the strip width is increased, 
so the velocities in the strip increase, and hence the Froude number 1; = u/(gh,)'/2 is 
governed by the width of the strip, and at small Froude number, F is a linear function 
of A .  A small amount of dissipation at fine scales is also applied to the right-hand sides 
of (1) and (2) for numerical stability. 

There are three significant reasons for choosing this type of initial flow. 
(i) The initial flows are completely devoid of gravity waves, and hence all 

propagating gravity waves in the flow must be generated by vortical motions. 
(ii) The vortical aspects of the flow are localized in the direction transverse to the 

initial shear flow, and there is a well-defined far field of gravity wave radiation distant 
from the vortical flow. The intensity of gravity wave radiation in this far field can then 
be taken as a measure of the strength of interaction between the vortical dynamics and 
the gravity waves in the system. 

(iii) The parameter space is as simple as possible, with the Froude and Rossby 
numbers being controlled by two independent parameters of the initial flow: the width 
of the strip and the potential vorticity in the strip respectively. 

All the flows simulated are unstable to the barotropic instability mechanism, 
described in terms of potential vorticity by Hoskins et al. (1985). An extensive review 
of shear flow instability was given by Ho & Huerre (1984). Although a study of the 
linear stability of a strip of potential vorticity in the shallow-water equations does not 
appear to have been published, the stability of a strip of potential vorticity in a class 
of balanced models, containing as limits of the class the two-dimensional Euler 
equations and the quasi-geostrophic equations, was recently studied by Waugh & 
Dritschel(l991). They found that, in the absence of externally imposed shear, the strip 
was always unstable to the barotropic shear flow instability mechanism, and in all cases 
the initial parallel flows described in this paper were readily found to be unstable. As 
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the instability develops, the potential vorticity rolls up into a train of vortices, spatially 
periodic in the streamwise direction. Many previous studies have addressed the 
subsequent merging of adjacent vortices as subharmonics of the fundamental 
wavelength of the primary instability develop (see Ho & Huerre (1984) and references 
therein). In this study, however, we are concerned with the degree to which the vortical 
motions, following the roll-up of the primary instability, will excite gravity waves 
which radiate away from the shear layer. To enable a thorough investigation of the 
Froude and Rossby number parameter space, numerical resources have been 
concentrated on simulating just one wavelength of the primary instability, with 
periodic boundary conditions in the streamwise direction of the period of the primary 
instability. It follows that subharmonics do not develop, and so the extent to which the 
vortex merging process excites gravity waves has not been investigated. 

The rest of this paper is organized as follows. In $2 the Lighthill analysis for the 
shallow-water equations is developed, as appropriate for periodic jets. In $ 3 the 
pseudoenergy flux is introduced as an appropriate measure of gravity wave radiation, 
and its dependence on the Froude number is derived. In $4 the numerical model to be 
used for the nonlinear simulations is described, and an overview of the simulations 
performed with the model is presented in $ 5 .  In $6, the gravity wave radiation from a 
train of vortices generated by the roll-up of a cyclonic strip of potential vorticity is 
discussed. The strip has potential vorticity equal to six times the background value. In 
$7, the effect of increasing the potential vorticity in the strip is investigated. In $8, 
anticyclonic strips are investigated, with potential vorticity in the strips equal to 0.1 
and 0 times the background value. In $9, the effect of negative potential vorticity is 
investigated, with potential vorticities in the strip of -0.1, - 1.0 and - 19.0 times the 
background value. Some conclusions are offered in $ 10. 

2. A 'Lighthill' theory of gravity wave generation for a periodic parallel 
flow 

In this section the analysis necessary to investigate the quantitative accuracy of the 
Lighthill theory, applied to periodic flows in a rotating frame, is developed. In further 
sections the analysis will be used to investigate the degree to which the theory remains 
applicable as the Froude number is increased and the compact source assumption 
becomes less valid. 

By an analysis similar to that presented by Lighthill (1952) for the compressible gas 
equations, manipulation of the shallow-water equations gives 

where (4) 

h, is the layer depth far from the region of vortical motion, and c0 = (gho)li2 is the 
gravity wave phase speed far from the region of vortical motion (see Ford et al. 1994). 
In (4), eij is the two-dimensional antisymmetric tensor of rank two and unit 
determinant: ell = ez2 = 0;  e12 = -ezl = 1. The left-hand side of (3) is simply the 
gravity wave operator acting on the time derivative of the height field, and the 
right-hand side is to be regarded as the effective source of gravity waves. The key point 
in Lighthill's theory is now to assume that the source term qj is only non-zero over a 
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small enough region that the right-hand side of (3) may be approximated by a 
quadrupole point source, and further to assume that the source flow, and hence Tj, 
may be regarded as known in terms of vortical dynamics, and can thus be computed 
without knowledge of the wave field. Both assumptions are valid in the limit of small 
Froude number, when the vortical flow is governed by the equations for a two- 
dimensional incompressible fluid, and the gravity wave wavelengths are O(F-’) larger 
than the scale of the vortical flow (Crow 1970; Ford et al. 1994). 

In comparing the gravity wave radiation with that predicted by the Lighthill theory, 
we shall concentrate on that component of the wave field which is independent of the 
streamwise coordinate x. In the asymptotic limit of small Froude number, it can be 
shown by the method of matched asymptotic expansions that all other components of 
the radiated wave field are exponentially small in Froude number compared with the 
x-independent component, and so this seems the natural component on which to focus 
the analysis. 

Now, let the x-average of a quantity a be denoted by 3. To derive the effective 
source for the x-independent component of the wave field, we must take the x-average 
of (3). The x-derivatives, in both the wave operator and the quadrupole term, then 
vanish, and we are left with a one-dimensional Klein-Gordon equation, with a one- 
dimensional quadrupole source term : 

To proceed, we need only assume that the source term zx is compact with respect 
to the cross-stream direction y. Making that assumption, we obtain 

- 

S(t’) Jo{f[(t - t’)’ -y2/~t]1’2} dt’, 
ah“ 
-(y, t) = -- 
at 

m 

S(t’) = T,,’(y’, t’) dy’, (7) s_, - where 

and J, is the regular Bessel function of order zeo (see Morse & Feshbach 1953). The 
factor arises from the fact that waves propagate in both positive and negative y-  
directions away from the source at y = 0. To reconstruct the wave field from a 
numerical simulation using (6), we now need only know the function S(t), a single 
function of time, which is obtained for each time t during the simulation by evaluating 
the integral (7) over the entire flow. 

We may readily proceed from here to show how ah/at in the wave region scales with 
properties of the vortical flow in the vortex train. Taking the Fourier transform of ( 5 )  
with respect to t, making the compact source approximation, we have 

where, as usual, o is the transform variable, and Z(w) is the Fourier transform of a(t). 
Now, scale analysis of (4) gives a scaling for T,, : zz (y’, o) - oU12hn, and hence, for 
o2 > f 2 ,  

where h is the lengthscale of the vortical region. 
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3. A quantity to diagnose gravity radiation - the pseudoenergy flux 
Since we are interested in the amplitude of gravity wave radiation over a wide range 

of Froude and Rossby numbers, it is desirable to take the flux of an appropriate wave 
quantity, such as pseudoenergy or pseudomomentum, as a measure of the strength of 
gravity wave radiation by the vortical flow. 

In general, a wave activity density A is a field, second order in disturbance amplitude 
in the limit of small disturbances, for which there exists an associated wave flux F, such 
that 

aA 
- + V * F =  0. 
at 

Definition of wave activities and their corresponding fluxes must be made with 
respect to some reference state. In this paper, we shall take the initial parallel flow as 
the reference state for the definition of wave activities and their fluxes. Throughout this 
section, u,, h, and Q, represent the velocity, height and potential vorticity respectively 
of the basic state, and u‘ and h’ represent departures of velocity and height from the 
basic-state values. The basic state possesses symmetries with respect to x-translation 
and time translation, and therefore it is possible to define both pseudoenergy and x- 
pseudomomentum fluxes. For the present study, we are interested in developing a wave 
quantity which can be used to characterize the strength of gravity wave radiation. If 
we are to take a single quantity, such as a wave flux strength, to characterize gravity 
wave radiation, then that quantity should satisfy a monotonic radiation property - i.e. 
all radiating waves should give rise to fluxes of the same sign, at least in the limit of 
linear waves. It turns out that this ‘monotonic radiation property’ is not satisfied by 
the pseudomomentum, but is satisfied by the pseudoenergy (Ford 1993). 

The technique for obtaining wave activities and fluxes is now quite well established 
(McIntyre & Shepherd 1987; Haynes 1988), and the details of the calculations of the 
pseudoenergy and pseudomomentum for the shallow-water equations will not be 
reproduced here. The pseudoenergy density is 

J Y* 

and its flux is 
F, = uA, + h, U, * U’U’ - ih, U ‘ ~ U ,  + igh”U + gh, h’u’. (12) 

In (1 l), yo  is the initial y location of the fluid in the reference state which is at location 
(x,y)  at the time t at which the wave activity density or flux is to be evaluated. The 
integral in (1 1) represents ‘Lagrangian information’ about the motion of fluid 
particles. Notice, however, that it will be non-zero only if the potential vorticity in the 
basic state is non-uniform between y and yo, implying that Rossby waves exist at the 
location y .  In this paper, we shall be concerned with gravity wave fluxes in a region of 
uniform potential vorticity. In computing the fluxes far from the vortical region, 
therefore, the contribution to (1 1) from the potential vorticity integral will be 
identically zero, and Lagrangian information is therefore not required to evaluate P far 
from the vortical region. 

It is then straightforward to show that the intensity of the pseudoenergy flux scales 
with the Froude number according to the expression 

h, c, F4h20(w2 - f ‘)l/’, w2 > f 
0, w2 < f 2  
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Thus if, at low Froude numbers, we assume that the velocity u scales as u - wh,  and 
the Froude number F - wA/c,, it follows that 

Thus, if w,  c, and h, are held fixed, and the Froude number is increased by increasing 
A, the scale of the vortical motions, the intensity of the pseudoenergy flux will increase 
as the sixth power of the Froude number, in agreement with the analysis of one- 
dimensional sound radiation by vortical motions presented by Ffowcs Williams (1969). 
However, if the Froude number is increased by increasing the magnitude of the 
vorticity in the vortical region, and therefore increasing IwI, no such simple scaling law 
applies. In general, for a given Froude number, the intensity of the wave fluxes will be 
greatest when w2 % f 2 ,  and the f 2 / w 2  term in (14) becomes insignificant. 

4. The numerical model 
The numerical model to be used integrates the nonlinear f-plane shallow-water 

equations in a channel geometry. The channel is periodic in the x-direction, and has 
solid boundaries at y = Y,  for some (usually large) Y. The shallow-water equations 
are integrated in non-dimensional form : 

ah a6h 
- + V . ( h u )  = V -  
at ax6 , 

where u is the two-dimensional velocity field, h is the layer depth, and k is the unit 
vector normal to the plane. The non-dimensionalization sets the lengthscales and 
timescales for the flow, such that the unit timescale is the inertial period f - l ,  and the 
unit lengthscale is the Rossby deformation radius (gh,)'12/lf. In (15) and (16), h has been 
rescaled so that g may be set to unity. The potential vorticity away from the region of 
vortical motions will therefore be unity. In subsequent sections, all results of model 
integrations will be presented using this non-dimensionalization of length- and 
timescales. 

The model allows variable resolution in both the streamwise and cross-stream 
directions. The computational domain is periodic in x, but of finite extent in y ,  and the 
equations are discretized using finite differences in the y-direction, with fields at each 
value of y being represented as a sum of Fourier modes in x. The y-discretization is 
performed on a staggered grid, with u, v on physical grid levels, and h at intermediate 
levels. Streamwise derivatives are computed in spectral space, and nonlinear products 
computed in physical space. The variable cross-stream resolution was implemented 
using a coordinate transformation. The numerical model is written in terms of a cross- 
stream variable q. The grid positions are equally spaced in the model coordinate 7, and 
the physical coordinate transformation is implemented by specifying a relationship 
between the model coordinate 7 and the physical coordinate y .  Cross-stream 
differencing is performed on the q-grid, where centred differencing can be used. In the 
vortical region the value of dq/dy is unity, whereas in the wave region its value is 
generally less than unity. In the region of variable resolution, a self-similar 
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transformation is employed, in which dv/dy = e-a(y-ql), where T~ is the outer limit 
of the region of high resolution, and a is a constant which sets the size of the region 
of variable cross-stream resolution. A maximum number of Fourier components is 
specified, which are to be used to represent the flow in the vortical region. Beginning 
at the start of the region of low cross-stream resolution, the number of Fourier 
components used to represent the solution is then reduced by a factor of two at every 
fifth cross-stream grid point, until a specified minimum number of streamwise 
components are left. This number of components is then used to represent the solution 
in the region of low resolution. In all simulations presented in this paper, 64 Fourier 
coefficients in the x-direction were used to resolve the vortical region. 

Some diffusion is required to remove fine scales, especially in the vortical region. This 
was implemented by applying a small amount of hyperdiffusion to the Fourier 
components in each of the fields u, u and h. The hyperdiffusion is proportional to kG, 
where k is the wavenumber. The rotational nature of vortical flow renders it sufficient 
to apply a diffusion in the streamwise direction only. Any fine-scale structure which 
builds up in the cross-stream direction in the vortical flow rotates into a streamwise 
orientation, where it will be removed by the hyperdiffusion. This type of hyperdiffusion 
was used by Haynes (1989), and appears to control fine-scale structure adequately for 
the present purposes. Its advantage is that it is simple to implement, and may be 
implemented in an implicit diffusion scheme using only division, and not tridiagonal 
matrix inversion as would be required for isotropic diffusion with a grid-point 
discretization in the cross-stream direction. A general disadvantage of hyperdiffusion 
is that it tends to produce ‘Gibbs’ Fringes’. In particular, the potential vorticity on the 
edge of a vortex can, during the simulation, exceed the range of potential vorticity at 
the start of the simulation - something which is not possible with Laplacian diffusion 
(see, for example, the recent comparison of contour surgery and pseudo-spectral 
methods by Legras & Dritschel 1993). While Gibbs’ fringes may pose a serious problem 
for some numerical modelling applications, the comparison of the gravity wave 
radiation with the Lighthill theory in @6-10 below shows that they should not be 
regarded as particularly detrimental for the purposes of the present study. Conservation 
of energy by the model was checked as the simulations proceeded, and typically the 
energy loss over the course of the simulations was less that 2 % .  

At the lateral boundaries, sponge layers may placed in the model over a variable 
number of grid levels. Rayleigh friction is applied there, which relaxes the flow back 
to the initial state. The value of the Rayleigh friction is small at the point where it is 
first encountered by waves propagating towards the boundary, and increases linearly 
towards the boundary. For all simulations presented here, it was found that applying 
Rayleigh friction over 30 grid levels, with a maximum value of 1.0 at the boundary, 
corresponding to an e-folding decay time of 1.0 for disturbances at the boundary, 
generally prevented any noticeable reflection from the boundary, and these values were 
used throughout. 

The equations are integrated forward in time using an explicit leapfrog time step, but 
with the hyperdiffusion and Rayleigh friction being performed implicitly. The basic 
leapfrog method is unstable, however, and a time filter must be used to prevent the 
growth of a rapidly oscillating computational mode. In the present simulations, a 
Robert-Asselin time filter (Robert 1966; Asselin 1972) was used with a value of 0.02. 
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Simulation 

A 
B 
C 
D 
E 
F 
G 
H 

Simulation 

A 
B 
C 
D 
E 
F 
G 
H 

( c )  

Simulation 

A 
B 
C 
D 
E 
F 
G 
H 

Ro=Q,- l  

5 
8 

20 
- 0.9 
- 1.0 
-1.1 
-2 
- 20 

Ro = Q,-1 

5 
8 

20 
-0.9 
- 1.0 
- 1.1 
-2 
- 20 

RO=Q1-l  

5 
8 

20 
-0.9 
- 1.0 
-1.1 
-2 
- 20 

Initial strip width 

i 11 

0.018 0.035 
0.018 0.035 
0.011 0.021 
0.42 0.84 
0.42 0.84 
0.42 0.84 
0.07 0.21 
0.007 0.013 

... 
111 iv V 

0.07 0.14 0.21 
0.07 0.21 ~ 

1.68 3.36 6.00 
1.26 2.52 6.00 
1.26 1.68 2.52 

0.041 0.081 ~ 

0.42 0.63 - 

0.021 0.031 - 

Wavenua-er of fastest growing moL- 

vi 

0.28 
- 
- 

9.00 

3.04 
- 

- 

- 

i 11 

28.0 14.0 
28.0 13.75 
50.0 30.0 
2.0 1.15 
2.0 1.15 
2.0 1.15 
7.2 3.5 

65.0 44.0 

i 11 

0.11 0.20 
0.17 0.32 
0.23 0.37 
0.25 0.44 
0.30 0.51 
0.33 0.58 
0.17 0.38 
0.20 0.31 

... 
111 iv V vi 

7.0 4.2 3.05 2.3 
6.6 2.6 

0.75 0.475 0.245 0.165 

0.9 0.75 0.55 0.47 
1.85 1.2 - - 

- - 
14.0 5.6 - - 

0.9 0.55 0.255 - 

30.0 20.0 - 

Froude number 

- 

... 
111 iv V vi 

0.36 0.50 0.59 0.66 
0.53 0.84 - - 

0.66 1.06 - - 

0.64 0.88 1.05 1.08 
0.64 0.99 1.78 - 

0.75 0.93 1.36 1.92 
0.73 1.31 - - 

0.49 0.75 ~ - 

TABLE 1. Initial strip widths, fastest growing wavenumbers and Froude numbers for all 
simulations 

5. Overview of numerical simulations 
Using the numerical model described in 94, gravity wave generation by vortical 

motions in the shallow-water equations is now studied by numerical simulation of the 
nonlinear evolution of a barotropically unstable strip of potential vorticity. The 
potential vorticity in the strip is Q,, and the background value of the potential vorticity 
is unity. The Rossby number Ro can then be defined as Ro = Q, - 1 .  As discussed in 
the Introduction, the only other significant parameter in the initial flow is the width of 
the strip, A ,  which determines the Froude number of the flow. 

In the following sections, simulations with a range of values of Q, and d are 
discussed. The simulations are labelled by letters A-H, with each letter corresponding 
to a different value of Q,. Simulations with the same value of Q, are distinguished by 
Roman numerals (e.g. A i-vi), with the Roman numeral increasing with increasing 
initial strip width. Table l ( a )  shows the values of Q, and d investigated, with their 
corresponding labels. 

In all cases, the initial conditions for the numerical simulation consist of a strip of 
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0 

FIGURE 1. Jet velocity and height fields for the initial states: strip potential vorticity positive 
(a) Q = 6 ,  (b) Q = 9, (c) Q = 21, ( d )  Q = 0.1. 

potential vorticity Q, centred on y = 0. The initial velocity and height fields for all 
simulations are shown in figures 1 and 2. Figure 1 shows the cases with positive 
potential vorticity in the strip, whereas figure 2 shows the cases with zero or negative 
potential vorticity in the strip. In all cases, the initial flow consists of two jets, flowing 
in opposite directions, with one jet centred at y = +id, and the other centred at 
y = -id. For positive potential vorticity in the strip, the gradient of the jet velocity 
decreases as the strip width increases, whereas for zero or negative potential vorticity 
in the strip, the gradient of the jet velocity increases as the strip width increases. The 
corresponding height fields are depressions for cyclonic potential vorticity, and 
elevations for anticyclonic potential vorticity. 

The model domain in the cross-stream direction extends from y = - Y to + Y,  for 
some large Y (see table 2), to accommodate several wavelengths of the radiating gravity 
waves within the computational domain. Only one wavelength of the fastest growing 
unstable linear eigenmode is simulated in all cases. The wavenumber of the fastest 
growing eigenmode is shown in table 1 (b), and a matrix method is used to obtain the 
eigenmode. In all cases except simulations Ci-iv and H i-iv, a small-amplitude 
disturbance of the form of the fastest growing eigenmode is added to the initial parallel 
flow at t = 0. If a large amplitude of the fastest growing eigenmode is added, then the 
flow will adjust, radiating gravity waves. The amplitude of the eigenmode added was 
therefore controlled such that any gravity waves generated by this initial adjustment 
had an amplitude of no more than 1-2% of the gravity waves subsequently by the 
vortical motions, when viewed in the ah/at field. In cases Ci-iv and Hi-iv, the strips 
are very narrow compared with a deformation radius. Consequently, the eigenmode 
decays very slowly with distance away from the strip, when compared with the width 
of the strip. This presents very large memory requirements for the matrix method used 
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FIGURE 2.  Jet velocity and height fields for the initial states: strip potential vorticity zero and 
negative. (a) Q = 0, (b)  Q = -0.1, (c)  Q = - 1 ,  (d) Q = 19. 

to find the eigenmode, and in these cases the flow was disturbed by the addition of 
random noise. Again, the amplitude of the random noise added was chosen to be 
sufficiently small that any gravity wave radiation associated with it was of small 
amplitude compared with the gravity waves subsequently generated by the vortical 
motions. 

In the nonlinear evolution of the flow, the strip of potential vorticity rolls up into a 
train of vortices, which then nutate, radiating gravity waves as they do so. In general, 
it was found that the maximum value of the Froude number throughout the fluid, 
which is found in the vortical region, can increase by as much as 50 YO during the initial 
development of the instability, and then tends to fluctuate as the vortices nutate. In 
subsequent sections, we shall consider how the amplitude of the flux of the radiated 
gravity waves scale with the Froude number, with reference to the predictions made in 
$02 and 3, and in particular equation (14). Therefore, as a measure of the Froude 
number of the flow, we shall require a Froude number associated with the gravity wave 
generation phase of the flow, rather than the initial roll-up phase. For this reason, the 
maximum value of the Froude number over all times was taken to characterize the 
Froude number of the flow, and for each simulation this value is shown in table 1 (c) .  

With the values of Q, and A selected, the remaining parameter which must be 
adjusted is the hyperdiffusion. Since it has no physical meaning, it was selected by 
experimentation with the simulation Aiii, with the aim of finding the minimum value 
which presented an unacceptable build-up of noise on small scales in the potential 
vorticity field. On the other hand, it was important to ensure that the vortices did not 
become axisymmetric too quickly as a result of excessive hyperdiffusion, and therefore 
lose their ability to radiate gravity waves. It was found that 64 Fourier coefficients were 
required to represent the fields at each cross-stream grid level if the required level of 



92 R.  Ford 

G 

Simulation 

A i 
11 
111 
... 

iv 

vi 

i 

V 

11 
111 
... 

iv 

1 
11 
111 
... 

iv 

i 
11 
111 
... 

iv 

vi 

i 

V 

I1 
111 
... 

iv 

i 

V 

11 
111 
... 

iv 

vi 

i 

V 

11 
111 
... 

iv 

H i 
11 
111 
... 

iv 

0.0025 
0.005 
0.01 
0.01 
0.01 
0.01 

0.0025 
0.005 
0.01 
0.01 

0.001 
0.001 
0.001 
0.004 

0.02 
0.04 
0.04 
0.04 
0.2 
0.2 

0.02 
0.04 
0.04 
0.04 
0.2 

0.02 
0.04 
0.04 
0.04 
0.04 
0.04 

0.01 
0.0 1 
0.02 
0.03 

0.001 
0.001 
0.001 
0.001 

Ny' 

150 
150 
350 
350 
350 
350 

150 
150 
350 
350 

350 
350 
350 
350 

350 
350 
350 
500 
600 
600 

350 
350 
350 
425 
600 

350 
350 
350 
350 

2000 
1000 

350 
350 
350 

2000 

350 
350 
350 
350 

WYfe 
0.0625 
0.125 
0.2 
0.2 
0.2 
0.2 

0.0625 
0.125 
0.2 
0.2 

0.02 
0.02 
0.02 
0.04 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

0.2 
0.2 
0.2 
0.2 
0.2 

0.2 
0.2 
0.2 
0.2 
0.04 
0.04 

0.2 
0.2 
0.2 
0.03 

0.025 
0.02 
0.02 
0.02 

NYt 
1000 
600 

1000 
I000 
1000 
1000 

1000 
600 

1000 
1000 

1000 
1000 
1000 
1000 

1000 
1000 
1000 
1000 
600 
600 

1000 
1000 
1000 
1000 
600 

1000 
1000 
1000 
1000 
2000 
1000 

1000 
1000 
1000 
2000 

1000 
1000 
1000 
1000 

Y 

24.5 
24.1 
59.8 
59.8 
59.8 
59.8 

24.5 
24.1 
59.8 
59.8 

5.98 
5.98 
5.98 

12.5 

62.3 
66.9 
66.9 
54.9 
59.9 
59.9 

62.3 
66.9 
66.9 
61.0 
40.0 

62.3 
66.9 
66.9 
66.9 
40.0 
20.0 

59.8 
59.8 
62.3 
30.0 

9.8 1 
5.98 
5.98 
5.98 

Nx" 

8 
8 
8 
8 
8 
8 

8 
8 
8 
8 

8 
8 
8 

16 

8 
8 

16 
16 
64 
64 

8 
8 

16 
16 
64 

8 
8 

16 
16 
64 
64 

8 
8 
8 

64 

8 
8 
8 

16 

At  

0.000625 
0.001 25 
0.0025 
0.0025 
0.0025 
0.0025 

0.000 625 
0.001 25 
0.0025 
0.0025 

0.00025 
0.00025 
0.00025 
0.001 

0.005 
0.01 
0.01 
0.005 
0.025 
0.025 

0.005 
0.01 
0.01 
0.005 
0.0125 

0.005 
0.01 
0.01 
0.005 
0.005 
0.0025 

0.0025 
0.0025 
0.005 
0.005 

0.00025 
0.00025 
0.00025 
0.000 125 

TABLE 2. Details of numerical resolution used in all experiments. (Ay)' is the cross-stream grid spacing 
in the vortical region; Ny$ is the number of cross-stream gridpoints in the vortical region; (Ay)' is the 
cross-stream grid spacing in the wave region; Ny' is the total number of cross-stream gridpoints; Y 
is the distance of the boundary from the centre of the domain in the cross-stream direction; N x e  is 
the number of Fourier coefficients in the streamwise direction used to resolve the wave region; At is 
the timestep 

hyperdiffusion was not to be so great as to cause the vortices to become axisymmetric 
after one or two nutations. With the value of the hyperdiffusion v selected, it was then 
adjusted between simulations so as keep uk:,,x(cYQ) constant, where k,,, is the 
maximum wavenumber in the simulation, and (SQ) is the magnitude of the potential 
vorticity difference between the vortices and the surroundings, meaning that in all 
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FIGURE 3. Early stages of vortical evolution, simulation Ai:  (a), (b), (c ) ,  ( d )  correspond to times 
1.56, 2.81, 4.06 and 5.31 respectively. Two periods of the model domain are shown. 

simulations it takes the same amount of time to damp out noise in the highest 
wavenumbers, based on typical vortex dynamical timescales set by the magnitude of 
the potential vorticity variations. For k = 1.0 and (SQ) = 1.0, the value of v used is 

To accommodate the wide range of strip widths (see table 1 a),  the grid-point spacing 
in the cross-stream direction had to be changed between simulations. In all cases, the 
region of uniform potential vorticity in the strip was distributed over at least seven grid 
intervals, and the potential vorticity was adjusted to the background value over five 
grid intervals. Details of the cross-stream resolution for all simulations are given in 
table 2. For the streamwise resolution, the 64 Fourier coefficients which were used in 
the vortical region were frequently more than sufficient to resolve the flow in the wave 
region. Therefore, in addition to varying the cross-stream resolution, the streamwise 
resolution was also varied, as described in $4. The number of Fourier coefficients used 
in the wave region are given in table 2. 

= 6.4 x 1 0 - 9 .  

6. Jets with moderate Rossby number and variable Froude number 
In the first set of numerical experiments, to be described in this section, the Rossby 

number is fixed, and the effect of varying the Froude number is investigated. In all these 
cases, therefore, the model is initialized with a strip in which the potential vorticity is 
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FIGURE 4. Nonlinear evolution of potential vorticity field, simulation Ai: (a), (b), (c), (d) correspond 
to times 6.56, 12.2, 17.8 and 23.4 respectively. Two periods of the model domain are shown. 

equal to six times the background value. This can be regarded as fixing the Rossby 
number at 5 .  The Froude number then is varied by varying the width of the strip. 

Six simulations were performed with the potential vorticity in the strip equal to six 
times the background value. Initial strip widths of 0.018, 0.035, 0.07, 0.14, 0.21 and 
0.28 were used. The corresponding Froude numbers found in the subsequent evolution 
varied from 0.11 to 0.67, increasing monotonically as the initial strip width increased. 

Figure 3 shows the potential vorticity field during the initial development and 
saturation of the instability in the simulation Ai. All potential vorticity plots are shown 
with an aspect ratio of unity, and consequently they show only a small portion of the 
domain in the cross-stream direction. While the model domain accommodates only one 
wavelength of the primary instability in the streamwise direction, in this, and all 
subsequent figures shown, two periods of the model domain are displayed. One can see 
that, as the instability develops, waves develop on the edges of the potential vorticity 
strip, which can be seen clearly in figures 3 (b) and 3 (c). Nonlinear saturation of the 
instability is shown in figure 3 (d) ,  where the strip has rolled up into a train of coherent 
vortices, connected by thin filaments. 

Figure 4 shows the potential vorticity field at four subsequent equally spaced time 
intervals until the end of the simulation. Although a small amount of hyperdiffusion 
is applied in the x-direction to prevent an accumulation of noise on the grid scale of 
the numerical model, it seems that the inviscid character of the vortical flow has been 
well simulated in this experiment. The vortices appear to nutate between almost 
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FIGURE 5. Development of gravity wave radiation, simulation Ai: (a), (b), (c), ( d )  correspond to 
times 6.56, 12.2, 17.8 and 23.4 respectively. Two periods of the model domain are shown. 

axisymmetric and substantially elliptical shapes, whereas if the hyperdiffusion is 
increased significantly they become axisymmetric after only two or three nutations. 
This behaviour has also been observed by Lele & Ho (1994), and can be seen in the 
incompressible simulations of Pozrikidis & Higdon (1985, see especially their figure 6). 

Linear gravity waves have zero potential vorticity perturbation, and so they are not 
observed in the potential vorticity plots shown in figures 3 and 4. However, we recall 
from ( 5 )  that, in the absence of nonlinearity, the Eulerian time derivative of the height 
field, ah/at, satisfies the linear wave equation for gravity waves, i.e. 

($ +fz  - ci vz - = nonlinear terms. )$ 



96 R. Ford 

(xIo-~)  (a) 
I I I I 

t I I I 1 I I 

- 20 - 10 0 10 20 

- 20 - 10 0 10 20 

5 

*r 

a 
a $ 0  

-5 

- 40 - 20 0 20 40 

Deformation radii 

FIGURE 6. The x-averaged ah/at field at the termination of simulations (a) Ai, (b) Aii, (c)  Aiii. Solid 
lines are from the nonlinear simulation, and dashed lines are from the Lighthill convolution integral. 

It is therefore natural to use %/at  to investigate gravity waves radiated by the shear 
instability. For each of the times shown in figure 4, the corresponding &%/at field is 
shown in figure 5 .  Only the region y > 0 is shown, since all simulations are symmetric 
about y = 0. The entire computational domain for y > 0 is shown in all plots of %/at ,  
and in figure 5 this requires that the cross-stream direction be compressed compared 
with the streamwise direction. As in the case of the potential vorticity field, two periods 
of the model domain in the streamwise direction are shown in all plots of ah/at. The 
greyscale map is chosen to saturate at the peak amplitudes in the wave region, even 
though typical values of a h p t  in the vortical region may be more than ten times greater 
than those found in the wave region. No quantitative information should be inferred 
from the greyscale plots of a h p t  shown in this paper. We shall address the quantitative 
aspects of the gravity wave radiation when we compare the waves generated with those 
predicted by the Lighthill theory, and discuss the way in which the amplitude of the 
radiating wave fluxes depend on the Froude and Rossby numbers of the vortical flow. 
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FIGURE 7. Vortex nutation times for all experiments, A-H. 

In the greyscale figure 5, however, two features of the radiated gravity wave field are 
nonetheless particularly striking. Firstly, the wavelength of the gravity waves is much 
longer than the cross-stream scale of the vortical motions. Secondly, the radiated 
gravity wave field is almost independent of the streamwise coordinate x. This means 
that we should expect the reconstruction of the gravity wave field from the Lighthill 
source term to be quite good for this simulation. 

In figure 6 ,  the x-averaged ah/at field is shown at the termination of simulations 
Ai-iii. The solid lines in figure 6 are the x-average of the height field obtained directly 
from the nonlinear simulation. The dashed lines are the result of using the source term 
S(t), obtained from (7), in the convolution integral (6 ) ,  and are therefore the wave field 
predicted by this modified form of the Lighthill theory. For simulation Ai, the 
agreement between the full simulation and the Lighthill reconstruction seems very 
good. This is reassuring, partly because the Froude number is quite small, and the 
compact source approximation should be reasonably accurate for this flow, and partly 
because it means that the numerical model is performing sufficiently well to capture the 
Lighthill mechanism, and that the resolution employed is adequate to reconstruct the 
Lighthill source term for the convolution integral (6 ) .  

As the initial strip width is increased, visual inspection of the potential vorticity field 
(not shown) indicates little difference in the vortical aspects of the dynamics between 
each of the three simulations Ai-iii. In each case, the strip of high potential vorticity 
rolls up into a periodic train of vortices, which subsequently nutate. However, there is 
a perceptible difference in the nutation times for the vortices. The nutation times for 
vortices in all simulations A-H are shown in figure 7, which shows that, for simulations 
Ai-iii, the nutation time for the vortices increases from 3.44 inertial periods 
(simulation Ai) to 4.88 inertial periods (simulation Aiii). The vortex nutation times are 
a significant feature of the flow, in that they are a broad measure of the degree of 
unsteadiness of the vortical flow compared with the unit inertial period. 
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FIGURE 8. The ah/at field at the termination of simulations Aiii-vi (a-d respectively) (time 62.5). 
Two periods of the model domain are shown. 

Considering now the gravity wave aspects of flows Aii and Aiii, the form of the 
radiated gravity waves remains similar in these two cases to those observed in 
simulation Ai. In figure 6, one can see that the agreement between the simulated wave 
field and its reconstruction from the Lighthill source term is quite good in each case. 
From figure 6, we can also see that the amplitude of the radiated gravity waves 
increases by a factor of about 12 between A i and A iii. The maximum Froude number 
found during the evolution increases from 0.11 (Ai) to 0.36 (Aiii) (see table 1 c), and 
we recall from (9) that, as the Froude number is increased, we expect the amplitude of 
the radiated gravity waves to increase as the third power of the Froude number. Thus, 
on the basis of the low-Froude-number asymptotic analysis, we should expect the 
gravity wave amplitude to change by a factor of 35. Evidently, the increase in gravity 
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wave amplitude as a function of Froude number over this range is not quite as large 
as one might expect on the basis of the Lighthill theory. Two assumptions were made 
to predict that the amplitude of the radiated waves would scale with the third power 
of the Froude number: the point source assumption, and the scaling assumption 
u - 01. The fact that the wave amplitudes do not increase as rapidly as the theory 
predicts is thus not necessarily an indication that the point source approximation will 
fail for these simulations, and could be attributable to the breakdown of the scaling 
assumption u - wl, which is consistent with the observation of increasing nutation 
times. 

Three further simulations (Aiv-vi) were then performed, with strip widths of 0.14, 
0.21, and 0.28. The vortical aspects of the flow remained qualitatively unchanged as the 
width of the strip, and hence the Froude number, was increased. In each case, the strip 
initially rolled up into a periodic train of vortices, which were allowed to rotate several 
times before the simulation was terminated. The most significant quantitative difference 
in the vortical aspects of the flow between these three cases is in the nutation rate of 
the vortices in the train, shown in figure 7, which increase apparently super- 
exponentially with increasing Froude number. 

Figure 8 shows the ah/at field at the termination of the simulations Aiii-vi. The main 
point is that, as the Froude number is increased, the radiated gravity waves develop 
more x-dependent structure. The gravity wave field is expected to be x-independent at 
low Froude numbers, and it is reasonable to expect more x-dependence in the field as 
the Froude number is increased, and the lengthscale separation between the vortices 
and the gravity waves diminishes. 

Figure 9 shows the x-averaged ah/& field at the termination of simulations Aiii-vi, 
and its reconstruction from the Lighthill source term. The most striking feature of the 
sequence of figures is that, in contrast to the rapid increase in wave amplitude with 
Froude number predicted by Lighthill’s scaling argument, the radiated wave 
amplitudes actually decrease. This clearly differs from the scaling arguments presented 
by numerous authors on aeroacoustics, which were discussed in 992 and 3, and from 
the mass of experimental data that confirm the Lighthill scaling in practice (Moore 
1977). 

Since the only new effect in the present study is the inclusion of background rotation, 
it follows that background rotation must be responsible for decreasing the wave 
amplitude as the Froude number is increased. Moreover, since the reconstruction of 
the wave field from the Lighthill source term effectively captures the decrease in wave 
amplitude, it must be explicable within the framework of the Lighthill theory. 

There are two possibilities. One is that the quadrupole source strength decreases, 
rather than increases, as the Froude number is increased. However, we should bear in 
mind that in order for the quadrupole source to excite propagating waves, it must have 
a significant component of its frequency above the inertial frequency. Therefore, a 
second possibility is that, although the magnitude of the source terms might actually 
increase as the Froude number is increased, their frequency component above the 
inertial frequency might decrease. 

Figure 10 shows the integrated source term S(t) for each of the simulations Ai-vi as 
a function of time. In general, the amplitude of the source term increases with 
increasing Froude number, but with frequency decreasing very rapidly with increasing 
Froude number. It seems, therefore, that the effect of the inertial cut-off, inhibiting 
gravity wave radiation at frequencies below the inertial frequency, is now dominant 
over the increased magnitude of the source term, leading to reduced wave amplitudes 
as the Froude number is further increased. 
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FIGURE 9. The x-averaged ?h/2t field at the end of simulations Aiii-vi (a-d respectively). 

We may conclude that, although the potential vorticity in the strip was chosen to be 
six times the background value, both the vortical flow and the wave generation process 
are significantly affected by the presence of background rotation. For small Froude 
numbers (between 0.11 and 0.35), the amplitude of the radiated gravity waves increases 
with Froude number, although not quite as rapidly as F3, as found in the asymptotic 
limit F + 1. When the Froude number exceeds 0.35, however, the radiated gravity wave 
amplitudes are found to decrease with increasing Froude number, even though the 
typical amplitudes of S(t) are generally increasing. This behaviour has never been 
found in numerical or laboratory experiments in a non-rotating frame. The presence 
of background rotation thus severely inhibits gravity wave radiation at moderate 
Rossby numbers, and there seems little doubt that the present study has investigated 
a case in which the effect of background rotation is quite strong, despite a notional 
Rossby number of 5.  Therefore, in the next section, we investigate the effect of 
increasing the potential vorticity in the strip. The strip remains cyclonic, but the effect 
of background rotation should decrease as the potential vorticity in the strip increases. 
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FIGURE 10. The source term S(r) for simulations Ai-vi (a-frespectively). Note the differing scales 
on the S(t)  axes. 

7. Cyclonic strips at large Rossby number 
In this section the results of simulations with strip potential vorticities of 9 and 21 

are presented. There are four simulations with strip potential vorticity 9, labelled Bi-iv, 
and four with strip potential vorticity of 21, labelled Ci-iv. In neither set of simulations 
should we expect to observe any qualitative difference from the simulations with 
potential vorticity of 6 in the strip. Quantitatively, we should expect to see more rapid 
vortical motions, and consequently a larger pseudoenergy flux in the radiated wave 
field. 

In simulations Bi-iv, the initial step widths are 0.018,0.035,0.07 and 0.21, resulting 
in Froude numbers of 0.17,0.32,0.53 and 0.84 respectively. In each case, the strip rolls 
up into a periodic train of vortices, which then nutate, radiating gravity waves. The 
vortical flow appears very similar to that observed in experiments Ai-vi, and potential 
vorticity plots are not shown here. The nutation periods for these vortices are shorter 
than for the corresponding simulations in sequence A, but still appear to increase 
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FIGURE 11. The x-averaged ah/at  field at the termination of simulations Bi-iv (a-d respectively). Solid 
lines are from the nonlinear simulation, and dashed lines are from the Lighthill convolution integral. 

super-exponentially with increasing Froude number (figure 7), in common with 
sequence A. The ah/at field follows broadly the same pattern as in the lower Rossby 
number simulations Ai-v'. At small Froude numbers, the wave field is almost 
independent of x, and as the Froude number is increased, amplitudes of the x- 
dependent modes increase. 

In figure 11, the x-averaged wave field is shown at the end of each simulation (solid 
line), and compared with its reconstruction from the Lighthill theory (dashed line). 
Overall, there is good agreement between the Lighthill theory and the numerical 
simulations, as there was in the lower-Rossby-number simulations A i-vi. As before, 
the agreement is best when the Froude number is lowest. The radiated wave amplitudes 
are seen to increase with increasing Froude number for simulations Bi-iii, but then 
decrease between B iii and B iv. 

The maximum pseudoenergy flux in the radiated wave field for simulations A-H is 
shown in figure 12. The dashed line is a line of gradient 6 on the log-log scale, which 
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FIGURE 12. Pseudoenergy flux against Froude number for all simulations (solid lines). The gradient 
of the dashed line corresponds to pseudoenergy increasing as the sixth power of the Froude number. 

is the gradient predicted by the small-Froude-number asymptotics (equation (14)). The 
Froude number at which the maximum pseudoenergy flux occurs is greater in case B 
than in case A, but the strip width at which the transition from increasing to decreasing 
pseudoenergy fluxes appears to be about the same, at around 0.1. 

Overall, increasing the potential vorticity in the strip from 6 to 9 has the effect of 
increasing the amplitude of radiated gravity waves, and their corresponding 
pseudoenergy fluxes. However, in both cases, there exists a Froude number (or 
equivalently a strip width) which is in some sense optimal for gravity wave radiation. 
The amplitude of the x-averaged pseudoenergy flux of radiated gravity waves increases 
with increasing Froude number up to this critical Froude number, but then decreases 
as the Froude number is increased further. 

Four further experiments, Ci-iv, were then performed with a strip potential vorticity 
of 21. These correspond to initial strip widths of 0.011, 0.021, 0.041 and 0.081 
respectively. Once again, in each case the strip rolls up into a periodic train of vortices, 
which then nutate several times before the simulation is terminated. The dependence 
of the nutation time upon the Froude number, shown in figure 7, is consistent with the 
behaviour found in experiments A and B, i.e. it appears to be increasing super- 
exponentially with Froude number. 

The comparison of the x-averaged i3h/at field with its reconstruction by the Lighthill 
theory is shown in figure 13, and again good agreement is generally obtained. Indeed, 
it seems that the agreement improves as the Rossby number is increased, when 
compared with simulations Ai-vi and Bi-iv. Even in simulation Civ, in which the 
Froude number exceeds unity in the vortical region, the general form of the radiated 
wave field is captured by the Lighthill theory, although the fine details are not. 

In figure 12, we see that in all cases A-C the pseudoenergy flux increases as the sixth 
power of the Froude number at small Froude number but, as the Froude number is 
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FIGURE 13. The x-averaged C7h/at field at the termination of simulations Ci-iv (a-d respectively) 
(solid lines), and its reconstruction from the Lighthill convolution integral (dashed lines). 

increased, the pseudoenergy flux increases less rapidly with increasing Froude number. 
It seems plausible from figure 12 that the very large-Rossby-number simulations C will 
exhibit an optimal Froude number for gravity wave radiation, in the same manner as 
simulations A and B, but that this value exceeds the values of Froude number 
investigated by the nonlinear simulations. 

From this section, we may conclude that several of the features exhibited by the 
strips with a potential vorticity of 6 are robust features of cyclonic strip roll-up, 
subsequent nutation and gravity wave radiation. In particular, the nutation time 
increases super-exponentially with increasing Froude number. In general the 
pseudoenergy flux associated with the radiating gravity waves increases with the sixth 
power of the Froude number at small Froude number, but ultimately decreases as the 
Froude number is made very large, due to the increased nutation times, and 
consequently reduced fraction of the effective gravity wave source spectrum lying 
above the inertial frequency. 
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It is important to realize at this point that thus far only cyclonic strips have been 
investigated in this study. All cyclonic strips appear to exhibit similar behaviour, in 
respect of their vortex nutation times and pseudoenergy flux dependences upon the 
Froude number. In the remainder of this paper, we shall investigate gravity wave 
generation by anticyclonic vortex trains, and compare it with those found for cyclonic 
cases. The anticyclonic parameter space is divided into three parts : strips with positive 
potential vorticity, strips with negative potential vorticity, and the single case of a strip 
with a potential vorticity of zero. In the next section, 98, we consider strips with non- 
negative potential vorticity, and then proceed in the following section, 99, to consider 
strips with negative potential vorticity. 

8. Anticyclonic strips with non-negative potential vorticity 
In this section, two sets of simulations are presented, with strip potential vorticity 

values of 0.1 and 0, labelled D and E respectively. 
Now, at low Froude number, the vortical flow is identical for all Rossby numbers, 

except that the timescale is set by the magnitude of the potential vorticity jump, with 
strips with small jumps evolving more slowly than those with larger jumps. However, 
we know from simulations A-C that a potential vorticity jump of at least 5 is required 
if the pseudoenergy flux is to exceed 1 0-6 at a Froude number of 0. 1. In this section we 
are concerned with anticyclonic but positive potential vorticity in the strip. We are 
therefore restricted to strip potential vorticity values between 1 and 0, and hence 
potential vorticity jumps between 0 and 1 .  It follows that we must expect very weak 
gravity wave radiation at low Froude numbers when the potential vorticity in the strip 
is between 0 and 1. Consequently, it was decided to concentrate on a strip potential 
vorticity value of 0.1, which is quite small (i.e. (SQ) is quite large, given that the 
anticyclonic potential vorticity is required to be of the same sign as the background), 
and hence the flow will give rise to radiated gravity wave amplitudes which are as large 
as reasonably possible, without the strip potential vorticity being so close to zero that 
very large Froude numbers would be required to establish any significant differences 
between the two cases D and E. 

Six simulations were performed with a strip potential vorticity of 0.1, with initial 
strip widths of 0.42, 0.84, 1.68, 3.36, 6.00 and 9.00, labelled Di-vi respectively. The 
vortical aspects of the dynamics in these simulations are similar to those found for 
simulations A-C. In common with the strips with cyclonic potential vorticity, the 
nutation times for experiments D i-vi, shown in figure 7, increase super-exponentially 
with increasing Froude number. However, agreement with the Lighthill theory is not 
found to be very good, even in the case Di, with a Froude number of only 0.2. Figure 
14 shows the x-averaged dh/at field during simulation Di. Although the Lighthill 
reconstruction captures the essential features, on the whole it performs rather poorly, 
when compared with cyclonic experiments A-C at similar Froude numbers. Now, in 
classical aeroacoustics, only two lengthscales are present in the flow: the scale of the 
vortical motions, and the scale of the aeroacoustic waves which they generate. In the 
problem of gravity wave generation by vortical motions in a rotating frame, however, 
the Rossby deformation radius is an additional lengthscale, which is unity in the non- 
dimensionalization used here. The Lighthill theory assumes that the quadrupole source 
may be concentrated at a single point. If this is to be a good approximation, the scale 
of the vortical flow must be small with respect to the wavelength of the waves it 
generates, which is the usual low-Froude-number assumption, and must also be small 
compared with a Rossby deformation radius. It seems likely that the reason for the 
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FIGURE 14. The x-averaged ah/at field at the termination of simulation D i  (solid line), and its 
reconstruction using the Lighthill convolution integral (dashed line). 

rather poor agreement in figure 14 is that, although the Froude number of 0.2 is small, 
the initial width of the strip is 0.42, and therefore the vortices are not very small 
compared to a Rossby deformation radius. 

In figure 15, the ah/at field is shown, at the time of most intense gravity wave 
emission, for simulations Di-iv. As the Froude number increases, the nature of the 
gravity wave generation appears to change. At small Froude numbers, the generation 
appears to be a rather long-range effect, with gravity waves generated being of much 
longer wavelength than the scale of the vortical motions. At higher Froude numbers, 
however, the generation mechanism appears to be a rather more local effect, with 
gravity waves apparently being ‘launched’ off the edges of the vortices as they rotate. 
As the Froude number is increased still further, the gravity waves radiated by the 
vortex train loose their coherent x-independent structure. Figure 16 shows the gravity 
wave field during simulations Dv and Dvi. In comparison with simulations Diii and 
Div, these gravity wave fields appear to be more arc-like, resembling radiation from 
point sources, rather than x-independent radiation from a line source exhibited at 
smaller Froude numbers. 

Notice in figure 12 the dependence of the gravity wave pseudoenergy flux on the 
Froude number for experiments Di-vi. As in the case of experiments A-C, experiments 
Di-vi exhibit an optimal Froude number, above which the gravity wave pseudoenergy 
flux decreases as the Froude number is further increased. The existence of an optimal 
Froude number is almost certainly due to the fact that the vortex rotation times 
increase very rapidly with Froude number for Froude numbers close to unity, and 
hence the gravity waves are severely inhibited by the presence of background rotation. 

It seems clear that the nature of the gravity wave radiation, and its ultimate 
limitation, is somewhat different in simulations D i-vi from that found in simulations 
A-C. The gravity wave pseudoenergy flux appears to increase more rapidly with 
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FIGURE 15. The ak/c?t field during the most active phase of gravity wave generation in simulations 
Di-iv (a-d respectively). Two periods of the model domain are shown. 

Froude number, at moderate Froude numbers, and the transition from increasing 
gravity wave amplitudes to decreasing amplitudes as the Froude number is increased 
is much more abrupt than is found for cases A-C, with cyclonic potential vorticity in 
the strip. However, analysis in this case is difficult because, unlike the cyclonic 
simulations A-C, the vortices are very much larger, when compared with a Rossby 
deformation radius, at the critical Froude number at which the transition from 
increasing to decreasing pseudoenergy fluxes occurs. This means that the Lighthill 
theory is inapplicable in this limit, and an alternative analytical description of the flow 
has not been attempted. 

The experiments with small positive potential vorticity in the strip are to be 
contrasted with experiments in which the potential vorticity in the strip is exactly zero. 
Five experiments were conducted with a strip potential vorticity of zero, with initial 
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FIGURE 16. The % / a t  field during simulations (a) Dv and (b)  Dvi. Two periods of the model 
domain are shown. 

strip widths of 0.42, 0.84, 1.26, 2.52 and 6.00. The experiments are labelled Ei-v 
respectively. 

Notice in figure 7 the dependence of the vortex nutation times on the Froude number 
for experiments Ei-v, and compare them with those for experiments A-D. Although 
there appears to be a very gradual increase in vortex nutation times with Froude 
number in cases Ei-v, the behaviour is to be contrasted sharply with that found for a 
strip potential vorticity of just 0.1. A very significant difference in the nature of the 
vortical flows is thus observed between simulations D and E, although the general 
nature of the flow remains broadly similar: the strip rolls up into a periodic chain of 
vortices which proceed to nutate, albeit at markedly different rates between simulations 
D and E, without significant change of form. 

The ah/at field during simulations Eii-v is shown in figure 17. At lower Froude 
numbers, it appears to behave in a similar way to the wave field in simulations D, with 
the gravity waves being launched from the edges of the vortices as they rotate. 
However, as the Froude number is increased, the radiated wave field does not become 
less coherent, but rather the wave crests of the launched waves become progressively 
sharper, almost resembling shock waves in the highest-Froude-number simulation E v. 

The maximum pseudoenergy flux found in the gravity wave field in simulations Ei-v 
increases strongly with Froude number, in parallel with that observed for simulations 
Di-iv (see figure 12). However, in case E the pseudoenergy flux increases with 
increasing Froude number apparently without bound, with the gravity wave field 
apparently becoming highly nonlinear, and somewhat shock-like, at the largest Froude 
numbers. 
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FIGURE 17. The %/at  field during simulations Eii-v (a-d respectively). Two periods of the model 
domain are shown. 

9. Anticyclonic strips with negative potential vorticity 
Having now classified the behaviour of the flows with non-negative potential 

vorticity, three further sets of simulations were undertaken to investigate gravity wave 
generation by vortex trains with negative potential vorticity. Strip potential vorticity 
values of -0.1, - 1.0 and - 19.0 were investigated, with a range of strip widths in each 
case. 

The experiments with a strip potential vorticity of -0.1 were performed for 
comparison with experiments Ei-v, in which the strip potential vorticity was zero, to 
investigate whether any additional effects occurred when slightly negative potential 
vorticity was present in the simulations. Six simulations were performed with a strip 
potential vorticity of -0.1, labelled Fi-vi. Initial strip widths taken were 0.42, 0.84, 



110 R. Ford 

( X ~ O - ~ )  (a) 

- 40 - 20 0 20 40 

2 

1 
\.r 

S O  
-a 

-1  

- 2  
- 40 - 20 0 20 40 

0 20 40 60 - 60 - 40 ~ 20 

Deformation radii 

FIGURE 18. The x-averaged dh/at field at the termination of simulations Gi-iii (a-c respectively) 
(solid line), and its reconstruction from the Lighthill convolution integral (dashed line). 

1.26, 1.68, 2.52 and 3.04. In figure 7, we see that the vortex nutation times for 
simulations Fi-vi are almost independent of Froude number, in common with Ei-v for 
strips with zero potential vorticity. The maximum pseudoenergy flux in the wave 
region, shown in figure 12, also appears to increase more rapidly than the sixth power 
of the Froude number, in common with Ei-v. The nature of the ah/at field in 
simulations Fi-vi broadly follows that for Ei-v. At small Froude numbers, the wave 
field consists of x-independent waves and waves with x-periodicity of one or two times 
the model domain. However, as the Froude number is increased, the x-dependence of 
the wave field increases, with shocks forming in cases Fv-vi (not shown). It seems 
reasonable to conclude that there is no appreciable difference between strips with zero 
potential vorticity, and strips with slightly negative potential vorticity. 

Four simulations were then performed with a strip potential vorticity of - I .O. The 
strips had initial strip widths of 0.07,0.21,0.42 and 0.63, and are labelled Gi-iv. Again, 
the vortex nutation times do not appear to change significantly with Froude number 
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FIGURE 19. The &%/at field during the simulations Gi-iv (a-d respectively). Two periods of the 
model domain are shown. 

(figure 7). The size of the vortices compared to a Rossby deformation radius is now 
much smaller than was the case in simulations D, E and F, with the largest initial strip 
width being 0.63, only 50 % wider than the smallest initial strip width in simulations D, 
E and F. Consequently, the Lighthill theory is significantly more successful at 
reconstructing the wave field. The x-averaged &?/at field, and its reconstruction from 
the Lighthill source term, is shown for simulations Gi-iii in figure 18, and good 
agreement is obtained for initial strip widths of 0.07 and 0.21. 

However, in line with experiments E and F, the character of the wave field departs 
significantly from that of linear waves as the Froude number is increased. In figure 19, 
the %/at  field is shown at the end of each simulation for the cases Gi-iv. In the first 
three cases the wave field appears to be well described by linear waves. At small Froude 
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FIGURE 20. The %/?t field at the termination of simulations Hi-iv (a-d respectively). Two periods 
of the model domain are shown. 

numbers the wave field is dominated by x-independent waves, with x-dependence 
increasing with increasing Froude number in simulations Gi-iii. Indeed, linear wave- 
like motions in the gravity wave field are a pre-requisite for good agreement with the 
Lighthill theory, observed in figures 18 (a) and 18 (b), which assumes a linear radiating 
wave field. In simulation Giv, however, the character of the wave field differs markedly 
from linear wave-like motions, with shock waves appearing in the radiating gravity 
wave field. In common with simulations Ev and Fv, the shocks in simulation Giv also 
appear to originate in the vortical region itself, although they appear to be somewhat 
sharper in this case than in the other two. At this point, however, it should be 
recognized that the discretization scheme is not designed to capture shocks, and any 
quantitative discussion of differences between shocks is inappropriate. If the details of 
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the shock waves generated are of interest, then the experiments would have to be 
repeated using a shock-capturing scheme. However, with meteorological applications 
in mind, it should be recalled that continuously stratified three-dimensional flows with 
negative potential vorticity are inertially unstable (Hoskins 1974), and these extreme 
cases in which flow with negative potential vorticity generates shock waves are 
therefore unlikely to be of practical meteorological interest. 

We can see from figure 12 that, at small Froude numbers, the pseudoenergy flux is 
increasing as the sixth power of the Froude number in this case. The increase then 
appears to become more rapid as the Froude number increases, in common with other 
anticyclonic simulations D-F, in which it appears that the pseudoenergy flux increases 
more rapidly than the sixth power of the Froude number. These do, of course, differ 
from the cyclonic simulations, in which the pseudoenergy flux never increased more 
rapidly than the sixth power of the Froude number. 

Finally, four simulations were performed with a strip potential vorticity of - 19.0. 
These simulations were performed for comparison with simulations Ci-iv, in which the 
strip potential vorticity was taken to be 21 .O. Consequently, at small Froude numbers, 
the dynamics of the strips should be identical in the two cases, with the magnitude of 
the potential vorticity jump being equal to 20 in both cases. Strip widths of 0.007, 
0.013,0.021 and 0.031 were taken, and the simulations are labelled Hi-iv respectively. 

From figure 7, it can clearly be seen that when there is negative potential vorticity 
in the strip the nutation times remain almost constant as the Froude number is 
increased, whereas in the case of positive potential vorticity in the strip the nutation 
times increase super-exponentially. 

In figure 20 the ah/at field is shown at the termination of simulations Hi-iv, and in 
figure 21 the comparison with the Lighthill theory is shown. The agreement seems quite 
good at small Froude numbers, but not as good as in simulations Ci-iv, even though 
the waves remain nearly independent of x. 

Now consider the peak pseudoenergy flux in the gravity wave far field, shown in 
figure 12. One can see that, although both sets of simulations are initially quite similar, 
as the Froude number is increased the simulations H i-iv, with negative potential 
vorticity in the strip, radiate gravity waves much more strongly that the corresponding 
cyclonic simulations with the same magnitude of potential vorticity difference between 
the strip and the background. Significantly, the pseudoenergy flux increases as the sixth 
power of the Froude number throughout simulations Hi-iv, and the faster-than-sixth 
power increase in pseudoenergy flux, observed for less anticyclonic simulations, does 
not appear to be present here, consistent with the vortical flow in this case being 
confined to a region small compared with a deformation radius, and therefore in a 
region in which (14) should apply. 

When comparing the x-averaged &/at field with its reconstruction from the 
Lighthill convolution integral (6), it is of interest to note that, while in most cases the 
maxima of the actual and reconstructed field coincide, in simulations C and H, shown 
in figures 13 and 21 respectively, the maxima appear to be offset. In figure 13, the 
maxima of the field obtained by reconstruction from ( 6 )  appear to lead those obtained 
by direct numerical simulation, whereas in figure 21 they tend to lag those obtained by 
direct numerical simulation. The reason is that the Lighthill theory assumes that the 
wave phase speed c, is constant everywhere. However, the vortical flow adjusts to rest 
over the scale of a Rossby deformation radius. In most cases, the radiated waves are 
of long wavelength compared with a Rossby deformation radius. However, as the 
potential vorticity in the strip increases, so the frequency of the vortical motion 
increases, and hence the wavelength of the radiated waves decreases. In cases C and H, 
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FIGURE 21. The x-averaged ah/at field at the termination of simulations Hi-iv (a-d respectively) 
(solid lines), and its reconstruction from the Lighthill convolution integral (dashed lines). 

the wavelength of the radiated waves is of the order of a deformation radius, and 
therefore they may be significantly affected during their propagation through the 
region over which the flow relaxes and adjusts to rest. In the cyclonic case C, the layer 
depth is less near the strip than at infinity, and the waves will tend to propagate more 
slowly there. Hence, the waves predicted by (6) will tend to lead those obtained by 
direct numerical simulation. Conversely, in the anticyclonic case H, the layer depth is 
greater near the strip than at infinity, and the waves will propagate more quickly there. 
Hence, the waves predicted by (6) will tend to lag those obtained by direct numerical 
simulation, in agreement with what is found in figures 13 and 2 1. 

10. Discussion 
Gravity wave radiation by a train of vortices in shallow water has been studied by 

direct numerical simulation. The dependence of the gravity waves radiated upon the 
Froude and Rossby numbers was investigated. 
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Arguably the most surprising result is that, for cyclonic vortices at a Rossby number 
of 5 ,  increasing the Froude number above 0.35 can lead to a decrease in the amplitude 
of the gravity waves radiated by the vortex train. This is in contrast to laboratory 
experiments, and the numerical experiments of Lele & Ho (1994) for a non-rotating 
gas, in which the acoustic wave amplitudes scaled according to the Lighthill theory for 
Mach numbers of up to 0.6 or so. 

A summary of the results, showing the dependence of the radiated pseudoenergy flux 
on the Froude number for various Rossby numbers is shown in figure 12. One can see 
that, in general, whereas positive potential vorticity trains tended to exhibit an 
'optimal' Froude number for gravity wave generation, the amplitude of gravity waves 
radiated by negative potential vorticity trains increases apparently without bound as 
the Froude number increases. 

Typical vortex nutation times for all experiments are shown in figure 7. One can see 
that nutation times increase super-exponentially with Froude number for all cyclonic 
vortex simulations, A-C, and also for anticyclonic simulations D (when the potential 
vorticity in the strip is strictly positive). As a result, the x-averaged pseudoenergy flux 
of the radiated gravity waves never exceeds about in simulations A-D, as the 
inhibiting effect of the inertial frequency becomes increasingly significant as the 
nutation times increase. However, when the potential vorticity in the strip is zero or 
negative, there does not appear to be any significant dependence of the nutation time 
upon the Froude number, and the radiated gravity wave fluxes apparently increase 
without bound. 

The most likely explanation for this difference lies in the range of interaction for 
vortical flows in rotating shallow water, which is given as (QJ/g)-'lz for parallel flow, 
with some modifications for axisymmetric flow (see, for example, Hoskins et al. 1985). 
Thus, if Qf> 0, as it is in cases A-D, it follows that, as the extent of the vortices is 
increased above their interaction range, the radius of curvature of the flow will become 
large compared with the internal interaction range for the vortex. At this point, the 
flow in the vortices may appear locally like a parallel flow, with jets on the edge of the 
vortex and a region of relative calm in the centre. The vortices may then be expected 
to become less unsteady, as the jets resemble locally isolated parallel flows. This effect 
is not present in the case of QJ< 0, corresponding to cases E-H, and hence the vortices 
would not be expected to nutate more slowly as their magnitude increases. 

To check that this explanation is plausible, we consider cross-stream sections of IuI 
through vortices with potential vorticity of 0.1 and 0. We examine two cases from each: 
two at small Froude number (Di and Ei respectively), and two at large Froude number 
(Dvi and Ev respectively). In all cases, the cross-section is taken at a time in the 
simulation when the vortices are aligned with their major axis parallel to the initial 
streamwise direction, several nutations after the initial roll-up of the strip, and in each 
case the cross-section passes through the centre of the vortex. 

In figure 22(a), the cross-sections of IuI are shown as a function of cross-stream 
coordinate for vortices with small Froude number (cases Di  and Ei). Notice that in 
these two cases the shear rate dlul/dy depends only upon the relative magnitude of the 
potential vorticity contrast with the background unit potential vorticity. In figure 
22(b), the cross-sections of IuI are as a function of cross-stream coordinate at large 
Froude number (cases Dvi and Ev). In these cases, the shear rate for the case Q = 0 
is almost unchanged from its value at small Froude number, whereas the shear rate for 
the case Q = 0.1 has reduced significantly. Notice in particular that in the case Q = 0.1 
dlul/dy is approximately zero at y = 0, and there is a region of non-zero cross-stream 
extent in which IuI is small, unlike the case of Q = 0. This is consistent with the notion 
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FIGURE 22. Cross-stream sections of IuI for Q = 0.1 (dashed line) and Q = 0 (solid 
(a) Di, Ei; (b)  Dvi, Ev.  
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that the vortex in the case Dvi is large compared with its internal deformation scale, 
and therefore has a region of relative calm at its centre, whereas the vortices in case Ev 
are vigorous throughout their core. However, although figure 22 demonstrates that 
there is a qualitative difference between positive and zero potential vorticity in vortices 
at large Froude number, there does not seem to be any straightforward way to predict 
how the nutation time should scale with Froude number. Indeed the magnitude of the 
effect of an internal deformation scale on the nutation time appears to be quite large, 
with a seven-fold increase in the nutation time between Ev and Dvi. 

Some asymmetry between cyclones and anticyclones at Rossby and Froude numbers 
of order unit has been observed in numerical simulations by Polvani et al. (1994), where 
the geometry of the flow is doubly periodic, and the initial vorticity field is random. The 
flow is balanced using the nonlinear balance equations (McWilliams 1985). In time, 
large coherent vortices develop, and at small Froude number there is symmetry 
between cyclonic and anticyclonic vortices. At larger Froude numbers, however, the 
flow is dominated by large coherent anticyclones, with much of the cyclonic potential 
vorticity smeared out into thin filaments. In some simulations, shock waves have been 
observed, emanating from the anticyclones. Polvani et aZ.’s simulations are in 
agreement with the results presented here, in that anticyclones are more vigorous 
features than cyclones in shallow-water dynamics at order-one Froude numbers, and 
are capable of generating shock waves in the gravity wave field at sufficiently large 
Froude number. Clearly some further analysis is warranted to investigate in more 
detail the distinction between cases where the potential vorticity in the vortices is of the 
same sign as the background, and those where it is of the opposite sign. 

Finally, we recall that this study was motivated, in part, by the observation by 
Norton (1988) and McIntyre & Norton (1994) that gravity waves of large amplitude 
were generally not generated by the vortical motions in their disturbed polar vortex 
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simulations. Now, in polar vortex simulations, the majority of the vortical motions are 
cyclonic, and the potential vorticity is all of one sign throughout the hemispherical 
domain. Consequently, they are not able to access the regime of zero and negative 
potential vorticity, which has been demonstrated in this paper to be the regime in which 
the strongest gravity wave generation might be expected. On the other hand, regions 
of negative potential vorticity are likely to be unstable to inertial instability (Hoskins 
1974). Therefore, the results from simulations F-H in the present study should be 
taken as complementary to those from simulations A-D. They should be regarded as 
adding weight to the theory that it is the presence of an internal interaction range which 
reduces the unsteadiness at large Froude numbers in A-D, but it should not be inferred 
that regions of negative potential vorticity are likely to be sites of intense gravity wave 
generation by the mechanism discussed in this paper. 
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studentship from the United Kingdom Natural Environment Research Council. 
Professor M. E. McIntyre made several helpful suggestions as the work progressed. 
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W. A. Norton (unpublished). Helpful discussions with B. J. Hoskins, R. Rotunno, R. 
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